[Tetrahedron 67 \(2011\) 8747](http://dx.doi.org/10.1016/j.tet.2011.09.021)-[8756](http://dx.doi.org/10.1016/j.tet.2011.09.021)

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Investigation towards an efficient synthesis of benzo[g]isoquinoline-1,5,10(2H)-triones

Blaise Mavinga Mbala^a, Jan Jacobs^a, Pieter Claes^a, Virima Mudogo ^b, Norbert De Kimpe^{a,*}

a Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium ^b Department of Chemistry, Faculty of Sciences, University of Kinshasa, PO Box 190, Kin XI, Kinshasa, Democratic Republic of Congo

article info

Article history: Received 24 June 2011 Received in revised form 6 September 2011 Accepted 8 September 2011 Available online 12 September 2011

Keywords: Benzo[g]furo[4,3,2-de]isoquinoline-2,5(4H) diones Benzo[g]isoquinoline-1,5,10(2H)-triones Pentalongin Nenitzescu reaction

ABSTRACT

As part of our research on 2-aza analogues of pentalongin, the active principle of Pentas longiflora Oliv., the first synthesis of 2,3-disubstituted benzo[g]isoquinoline-1,5,10(2H)-triones via 3,4-disubstituted 6 hydroxybenzo[g]furo[4,3,2-de]isoquinoline-2,5(4H)-diones as the key intermediates is reported. The latter compounds have been prepared by treating 2-methoxycarbonyl-1,4-naphthoquinone with Nsubstituted enaminoesters under acidic conditions. These reagents are easily accessible from readily available 1,4-dihydroxy-2-naphthoic acid, b-ketoesters and primary amines. Finally, a short synthesis of substituted benzo[g]isoquinoline-1,5,10(2H)-triones is achieved by an oxidative addition of N-substituted enaminoesters onto methyl 1,4-dihydroxynaphthalene-2-carboxylate.

2011 Elsevier Ltd. All rights reserved.

1. Introduction

2-Azaanthraquinones can be considered as 2-aza analogues of pyranonaphthoquinones to which belong eleutherin $\mathbf{1},^1$ $\mathbf{1},^1$ $\mathbf{1},^1$ ventiloquinone L 2^2 2^2 and pentalongin 3^3 3^3 the naturally occurring pyranonaphthoquinone and active principle of Pentas longiflora Oliv, 3 which suggests their potential value as lead structures for the development of new pharmaceuticals and agrochemicals.

1 eleutherin **2** ventiloquinone L **3** pentalongin

Unlike pyranonaphthoquinones, their nitrogen analogues are scarcely found in nature and are reported to exhibit several interesting bioactivities, including antimicrobial, cytotoxic and insecticidal activities.⁴ Examples of naturally occurring 2-azaanthraquinones in-clude bostrycoidin 4,^{[5,7](#page-9-0)} tolypocladin ${\bf 5}^6$ ${\bf 5}^6$ and scorpinone ${\bf 6}^{.5f,7}$ ${\bf 6}^{.5f,7}$ ${\bf 6}^{.5f,7}$ Several research groups⁸ including ours, disclosed different synthetic strategies for the preparation of 2-azaanthraquinone derivatives, such asNsubstituted benzo[g]isoquinoline-5,10-diones,⁹ N-substituted benzo [g]isoquinoline-3,5,10(2H)-triones¹⁰ and 2,4-disubstituted benzo[g] isoquinoline-3,5,10(2H)-triones.¹¹

^{*} Corresponding author. E-mail address: Norbert.Dekimpe@UGent.be (N. De Kimpe).

 $4R^1 = R^3 = OH$, $R^2 = OMe$ (bostrycoidin) **5** $R^1 = R^2 = R^3 = OH$ (tolypocladin) **6** $R^1 = R^2 = OMe$, $R^2 = H$ (scorpinone)

However, the synthesis of 2,3-disubstituted benzo[g]isoquinoline-1,5,10(2H)-triones 7, the partial structural pattern found in kibdelone A $\boldsymbol{8}$, has only been synthesized to a very limited extend.^{12a} Kibdelone A 8 belongs to a novel family of bioactive heterocyclic polyketides produced by a rare soil actinomycete Kibdelosporangium sp. (MST-108465) and exhibits potent selective cytotoxicity against a panel of human tumour cell lines as well as significant antibiotic and nematocidal activity[.12](#page-9-0)

In this manuscript, an investigation towards the first synthesis of substituted benzo[g]isoquinoline-1,5,10(2H)-triones **9** is reported. Retrosynthetic analysis suggested that three possible routes could lead to the synthesis of the targeted alkyl 2,3-dialkylbenzo[g]isoquinoline-1,5,10(2H)-trione-4-carboxylates 9 (Scheme 1). Two routes rely on the synthesis of 3.4-dialkyl-6-hydroxybenzolglfuro[4,3,2-de] isoquinoline-2,5(4H)-diones 10 as key intermediates, which may most likely be prepared by treating 2-methoxycarbonyl-1,4 naphthoquinone 11 with either β -ketoesters 13 and primary

disclosed on this addition reaction under acidic conditions¹⁵ de-spite the fact that experiments^{14,15} and ab initio calculations^{[16](#page-9-0)} showed that quinones behave better as electrophiles under acidic conditions. Therefore, the addition of β -ketoesters **13** to 2methoxycarbonyl-1,4-naphthoquinone 11^{17} 11^{17} 11^{17} was conducted under acidic conditions in order to avoid the formation of the kinetic product of the reaction, i.e., ethyl 5-hydroxy-4-methoxycarbonyl-2 methylnaphtho[1,2-b]furan-3-carboxylate 17 and its subsequent decarboxylated derivative 18, which would divert the course of the

amines 12 (Scheme 1, route A) or ready-made N-alkyl enaminoesters 14 (Scheme 1, route B). A third route, which will be investigated, concerns the oxidative addition reaction of N-alkyl enaminoesters 14 with methyl 1,4-dihydroxynaphthalene-2-carboxylate 15 (Scheme 1, route C) as entries towards the synthesis of substituted benzo[g] isoquinoline-1,5,10(2H)-triones 9.

2. Results and discussion

2.1. Route A

The addition of β -ketoesters to quinones under basic^{[13](#page-9-0)} and radical 14 conditions has been well described, but few reports are synthesis.^{[15](#page-9-0)} The naphtho^{[1,2-b]furan **17** arises from the intra-} molecular nucleophilic attack of the intermediate phenol of the adduct 16a across the ketone function of the acetonyl moiety (Scheme 2). Therefore, test reactions were conducted under different reaction conditions treating the activated naphthoquinone 11 with ethyl acetoacetate 13a. The desired naphtho $[1,2-b]$ furan- $2(3H)$ -one **19a** was obtained in 54% yield when using a mixture of toluene and acetic acid (5:1) under reflux for 4 h [\(Scheme 3](#page-2-0)).

Extending the optimized reaction conditions for the synthesis of other derivatives $19b-d$ from 2-methoxycarbonyl-1,4naphthoquinone 11 and higher β -ketoesters 13 was successful in low (17%) to moderate yield (54%) except for compound 19e due to the steric hindrance of the bulky tert-butyl group, which afforded

a very complex mixture without a trace of the targeted compound **19e** as checked by NMR and LC $-MS$ analysis.

In a following part, a one-pot synthesis of benzo[g]furo[4,3,2-de] isoquinoline-2,5(4H)-diones 10 was investigated by reaction of the activated naphthoquinone 11 with ethyl acetoacetate 13a and ammonium acetate in boiling acetic acid. However, no trace of compound 10b was observed while the naphtho $[1,2-b]$ furan 18 was isolated in 13% yield together with methyl 1,4-dihydro-
xynaphthalene-2-carboxylate **15** and 3-amino-2-methoxyxynaphthalene-2-carboxylate 15 and 3-amino-2-methoxycarbonyl-1,4-naphthoquinone 20 in 6% and 41% yield, respectively (Scheme 4).

dihydro-5-hydroxy-2-oxonaphtho[1,2-b]furan-4-carboxylate 19a with 2 equiv of *n*-propylammonium acetate, which was generated in situ by the reaction of *n*-propylamine and acetic acid at 0° C for 30 min, in boiling toluene-acetic acid (5:1) resulted in the formation of methyl 2,3-dihydro-5-hydroxy-2-oxonaphtho[1,2-b]furan-4-carboxylate 21 in 53% yield instead of the targeted 2,3-dialkylbenzo[g]furo[4,3,2-de]isoquinoline-2,5(4H)-dione 10a (Scheme 5). Facing this drawback, different attempts were made to insert the nitrogen atom using an excess of ammonium acetate in different solvents in order to reduce the eventual steric effect that might be exhibited by an alkyl group.

The formation of the tricyclic compound 18 arose from a condensation reaction outlined in [Scheme 2](#page-1-0). The formation of methyl 1,4-dihydroxynaphthalene-2-carboxylate 15 and 3-amino-2 methoxycarbonyl-1,4-naphthoquinone 20 was also observed recently by the reaction of the activated naphthoquinone 11 with an excess of ammonium acetate in boiling acetic acid.^{[9a](#page-9-0)} Therefore, the outcome of the competitive addition of ammonia and of the enolate of ethyl acetoacetate 13a to 2-methoxycarbonyl-1,4 naphthoquinone 11 led favourably towards the facile ammonia addition compared to that of the ethyl acetoacetate 13a. Under these conditions, the ammonia adduct 20 is formed preferentially in comparison with compound 18, which is supported by the respective isolated yields of each addition product, and as a consequence, treatment of the activated naphthoquinone 11 with β ketoesters 13 and ammonium acetate in boiling acetic acid did not appear to be the right condition to set an efficient one-pot synthesis of benzo[g]furo[4,3,2-de]isoquinoline-2,5(4H)-diones 10. Thus, an alternative synthesis was to be envisaged in order to prepare the target intermediates 10 from methyl 3-acyl-2,3-dihydro-5 hydroxy-2-oxonaphtho[1,2-b]furan-4-carboxylates 19 and primary amines 12. Unfortunately, treatment of methyl 3-acetyl-2,3-

However, all the attempts failed to afford compound 10a (Table 1, entries $2-4$) and provided the same unexpected methyl 2,3-dihydro-5-hydroxy-2-oxonaphtho[1,2-b]furan-4-carboxylate 21 in $46-67%$ yield. An attempt to increase the substrate electrophilicity of the carbonyl group by substitution of the methyl group in methyl 3-acetyl-2,3-dihydro-5-hydroxy-2-oxonaphtho[1,2-b] furan-4-carboxylate 19a with a phenyl group in methyl 3-benzoyl-2,3-dihydro-5-hydroxy-2-oxonaphtho[1,2-b]furan-4-carboxylate 19d improved the yield of the same product 21 to 91% (Table 1, entry 5), probably by limiting side reactions.

Table 1

Reaction conditions for the conversion of methyl 3-acyl-2,3-dihydro-5-hydroxy-2 oxonaphtho[1,2-b]furan-4-carboxylates 19a,d to methyl 2,3-dihydro-5-hydroxy-2 oxonaph-tho[1,2-b]furan-4-carboxylate 21

The formation of methyl 2,3-dihydro-5-hydroxy-2-oxonaphtho $[1,2-b]$ furan-4-carboxylate 21 can be explained by a nucleofuge group expulsion of intermediate 22, which is formed after the addition of the amine across the acyl or benzoyl group of naphthofuran derivatives 19, and subsequent keto-enol tautomerism (Scheme 6). The difficult access to the key intermediates 10 by reaction of naphthofurans 19 with amines put a serious impediment to this first route A towards the targeted benzo[g]isoquinoline-1,5,10(2H)-triones 9 and prompted us to work out the second route B, which calls upon N-substituted enaminoesters 14.

2.2. Route B

The reaction of enaminoesters with simple quinones is known in the literature as the Nenitzescu reaction.^{[17](#page-9-0)} In case of 2methoxycarbonyl-1,4-naphthoquinone 11 as the substrate, enaminoesters 14[18](#page-9-0) add to this activated quinone to form tautomeric intermediates 24 and 25, which can cyclize in two modes. The first mode implies a nucleophilic attack of the amino group of compound 24 across the ketone moiety leading to an annelated indole 26, while the second mode implies a nucleophilic attack of the amino group of intermediate 25 across the ester carbonyl group leading to benzo[g]isoquinoline-1,5,10(2H)-triones 9 (Scheme 7).

The reaction of the activated naphthoquinone 11 with N-npropyl- and N-ethylamino-2-butenoates 14a and 14d in boiling toluene/acetic acid (5:1), as previously established in the case of bketoesters, furnished the hydroquinone adducts 25, which cyclized to compounds 10 [\(Scheme 8](#page-4-0), [Table 2](#page-4-0)). Structure determination of the compounds, which were isolated from the reaction crudes, excluded annelated indoles 26 as a possible structure for these compounds, since the 13 C NMR spectra showed the presence of an amide as well as an ester function (Scheme 7). However, the paraquinone system of the alternative compound 9 was not present in the ¹³C NMR and the IR showed the presence of a hydroxyl group. In this way, the molecular structure of the isolated compounds was determined to be 6-hydroxy-3-methylbenzo[g]furo[4,3,2-de]isoquinoline-2,5(4H)-diones 10. Amending the above mentioned reactions, the hydroquinone adducts 25 were found to cyclize hardly to 6-hydroxy-4-n-propyl-3-methylbenzo[g]furo[4,3,2-de]isoquinoline-2,5(4H)-dione 10a and 4-ethyl-6-hydroxy-3-methyl-benzo[g] furo[4,3,2-de]isoquinoline-2,5(4H)-dione 10d ([Table 2](#page-4-0), entries 1 and 2). Nevertheless, the use of N-ethylamino-2-pentenoate 14e resulted in a spontaneous cyclization to the targeted benzo[g]furo $[4,3,2-de]$ isoquinoline-2,5(4H)-dione 10e upon boiling in toluene: acetic acid (5:1) for 4 h ([Table 2](#page-4-0), entry 3). Other substituent combinations utilizing enaminoesters $14f-g$ gave intractable mixtures of compounds, from which the targeted compounds could not be isolated by column chromatography and/or recrystallization. This can be ascribed to a difficult cyclization of intermediate naphtho [1,2-b] furans 28, even upon prolongation of the reaction time to 48 h, which results in a partial degradation of the compounds ([Table 2,](#page-4-0) [Scheme 8\)](#page-4-0).

Finally, 4-ethyl-6-hydroxy-3-methylbenzo[g]furo[4,3,2-de] isoquinoline-2,5(4H)-dione 10d and 3,4-diethyl-6-hydroxybenzo $[g]$ furo[4,3,2-de]isoquinoline-2,5(4H)-dione **10e** were hydrolyzed to 2-ethyl-3-methyl-1,2,5,10-tetrahydro-1,5,10-trioxobenzo [g]isoqui-noline-4-carboxylic acid 30d and 2,3-diethyl-1,2,5,10 tetrahydro-1,5,10-trioxobenzo[g]isoquinoline-4-carboxylic acid 30e in 40 and 98% of crude yield, respectively, using 4 M NaOH/ THF/MeOH $(2:1:1)$ at 50 °C for 1.5 h and subsequent spontaneous air oxygen oxidation. However, hydrolysis of 6-hydroxy-3 methyl-4-n-propylbenzo[g]furo[4,3,2-de]isoquinoline-2,5(4H) dione 10a under the same conditions gave a complex mixture of reaction products ([Scheme 8](#page-4-0)). All attempts to purify compounds 30d and 30e by chromatography and recrystallization techniques failed.

Table 2

Reaction of different N-substituted enaminoesters 14 with 2-methoxycarbonyl-1,4 naphthoquinone 11 in boiling toluene: acetic acid (5:1) to afford 3,4-dialkyl-6 hydroxybenzo[g]furo[4,3,2-de]isoquinoline-2,5(4H)-diones 10

Therefore, the crude extracts of the hydrolysis reactions containing 2-ethyl-3-methyl-1,2,5,10-tetrahydro-1,5,10-trioxobenzo[g] isoquinoline-4-carboxylic acid 30d and 2,3-diethyl-1,2,5,10 tetrahydro-1,5,10-trioxobenzo[g]isoquinoline-4-carboxylic acid 30e, respectively, have been converted to the corresponding methyl esters by treatment with a solution of diazomethane in anhydrous diethyl ether at room temperature (Scheme 9). In the first case, methyl 2-ethyl-3-methyl-1,2,5,10-tetrahydro-1,5,10-trioxobenzo[g] isoquinoline-4-carboxylate 9d was isolated together with methyl 2-ethyl-1,2-dihydro-5,10-dihydroxy-3-methyl-1-oxobenzo[g]isoquinoline-4-carboxylate 31d in 14% and 22% yield, respectively. Different attempts to purify compound 31d by preparative TLC and recrystallization failed. In order to get full conversion of intermediate hydroquinone 31d to benzo[g]isoquinoline-1,5,10(2H) trione 9d, the workup extract of the diazomethane reaction was stirred with magnesium sulfate or silica gel for 24 h in the presence of air oxygen. Unfortunately, this operation failed to fully convert the reaction substrate to the targeted benzo[g]isoquinoline-1,5,10(2H)-trione 9d. Secondly, methyl 2,3-diethyl-1,2,5,10-

tetrahydro-1,5,10-trioxobenzo[g]isoquinoline-4-carboxylate 9e was isolated as the sole product in an excellent yield of 97% directly after the treatment of compound 29e with diazomethane in the presence of air. An attempt to obtain methyl 2,3-diethyl-1,2 dihydro-5,10-dihydroxy-1-oxobenzo[g]isoquinoline-4-carboxylate 31e by running the reaction with diazomethane under nitrogen atmosphere and quickly performing the workup of the reaction gave methyl 2,3-diethyl-1,2,5,10-tetrahydro-1,5,10-trioxobenzo[g] isoquinoline-4-carboxylate 9e in 28% yield and a complex fraction, which revealed the presence of very minute quantity of methyl 2,3 diethyl-1,2-dihydro-5,10-dihydroxy-1-oxobenzo[g]isoquinoline-4 $carboxylate$ 31e upon LC-MS analysis.

The remarkable differences observed in the chemical behaviour of compound 31d in comparison with compound 31e on the one hand and of benzo[g]isoquinoline-1,5,10(2H)-trione **9d** in comparison with compound 9e on the other hand, were clues for the development of a short alternative procedure, such as the direct reaction of methyl 1,4-dihydroxynaphthalene-2-carboxylate 15 with enaminoesters 14 under oxidative conditions.

2.3. Route C

First, the reaction of methyl 1,4-dihydroxynaphthalene-2 carboxylate 15 with enaminoester 14e was screened in order to optimize the oxidative addition reaction for these reaction substrates. An excess of oxidant was needed to assure the oxidation of hydroquinone 15 before the addition reaction and of the adduct after the addition of enaminoester 14e. Therefore, methyl 1,4 dihydroxynaphthalene-2-carboxylate 15 and enaminoester 14e were reacted using manganese oxide as the oxidant of choice. At the end, methyl 2,3-diethyl-1,2,5,10-tetrahydro-1,5,10-trioxobenzo [g]isoquinoline-4-carboxylate **9e** was obtained in 69% yield over two steps using 6 equiv of manganese dioxide and 10 equiv of magnesium sulfate in anhydrous dichloromethane for 3.5 h at room temperature to afford a mixture of the targeted benzo[g]isoquinoline-1,5,10(2H)-trione 9e and its precursor 32, which was converted subsequently in the target compound 9e by boiling in a mixture of toluene/acetic acid (5:1) (Table 3, entry 1). In the absence of acetic acid in the second step, the yield of the reaction was lowered (Table 3, entry 2). The attempts to prepare methyl 2,3-diethyl-1,2,5,10 tetrahydro-1,5,10-trioxobenzo[g]isoquinoline-4-carboxylate 9e in a single step resulted in lower yields (Table 3, entries 3 and 4). It was noticed that the presence of acetic acid was detrimental to this direct one-step procedure.

Table 3

Test reactions towards the direct synthesis of methyl 2.3-diethyl-1.2.5.10-tetrahydro-1.5.10-trioxobenzo[g]isoquinoline-4-carboxylate 9e

Referring to the overall yield of each route, the two-steps procedure appeared to be the best entry towards benzo[g]isoquinoline-1,5,10(2H)-triones 9 compared to the direct one-step oxidative addition (Table 3, entries 3 and 4) and the multistep procedures previously elaborated and described earlier in this manuscript (routes A and B). Having in hand this two-steps procedure, other derivatives ($9a,e-j$) were prepared accordingly in 29–71% yields (Table 4).

3. Conclusion

A short and efficient synthesis of 2,3-disubstituted alkyl 1,2,5,10 tetrahydro-1,5,10-trioxobenzo[g]isoquinoline-4-carboxylates was

Table 4

Synthesis of 2,3-disubstituted alkyl 1,2,5,10-tetrahydro-1,5,10-trioxobenzo[g]isoquinoline-4-carboxylates 9 by a two-steps procedure involving oxidative addition of enaminoesters 14 to methyl 1,4-dihydroxynaphthalene-2-carboxylate 15

4. Experimental section

4.1. General experimental methods

¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded with a Jeol NMR spectrometer. Peak assignments were performed with the aid of the DEPT technique, 2D COSY and HSQC

achieved in two steps by reacting methyl 1,4 dihydroxynaphthalene-2-carboxylate with enaminoesters in the presence of 6 equiv of manganese dioxide and 10 equiv of magnesium sulfate in anhydrous dichloromethane for 3.5 h and sub-

sequent boiling in a mixture of toluene/acetic acid (5:1).

spectra. Mass spectra were recorded using a direct inlet system (70 eV) with a VL detector (ES, 4000 V). IR spectra were recorded with a Perkin Elmer FT-IR spectrometer. Elemental analyses were executed with a Perkin-Elmer Series II CHNS/O Analyzer 2400. Although numerous attempts were executed for the recrystallized compounds, the results were found to be unsatisfactory to date. Therefore, HRMS were recorded using a tandem spectrometer Agilent 6220 TOF-LC/MS. Melting points were recorded on a Buchi melting point B-540 apparatus and are not corrected. Flash chromatography was carried out using a glass column with silica gel (particle size $0.035-0.070$ mm, pore diameter ca. 6 nm). Solvent systems for column chromatography were determined via initial TLC analysis (silica gel).

4.2. Synthesis of methyl 3-acyl-2,3-dihydro-5-hydroxy-2 oxonaphtho[1,2-b]furan-4-carboxylates 19

General procedure: To a solution of 2-methoxycarbonyl-1,4- naphthoquinone 11 (2.4 mmol, 0.5 g)^{[9a](#page-9-0)} in toluene (16.7 ml) were added acetic acid (3.3 ml) and 1.05 equiv of β -ketoesters 13a-e, respectively. The reaction mixture was subsequently boiled under reflux for 4 h. After cooling to room temperature, the reaction mixture was poured in a saturated aqueous solution of sodium bicarbonate. The organic phase was separated and the remaining aqueous phase was extracted with 3×20 ml of dichloromethane. The combined extracts were dried over magnesium(II) sulfate. Solvent evaporation in vacuo furnished a crude solid, which was recrystallized from ethanol.

4.2.1. Methyl 3-acetyl-2,3-dihydro-5-hydroxy-2-oxonaphtho[1,2-b] furan-4-carboxylate **19a**. Green crystals, mp: $180.9-181.8$ °C (EtOH). ¹H NMR (CDCl₃): δ 2.46 (3H, s, CH₃), 3.93 (3H, s, MeO), 5.17 (1H, s, H-3), 7.60-7.67 (1H, m, H-7 or H-8), 7.70-7.77 (1H, m, H-7 or H-8), 7.94 (1H, d, $J=8.3$ Hz, H-6 or H-9), 8.46 (1H, d, $J=8.3$ Hz, H-6 or H-9), 11.84 (1H, s, OH). ¹³C NMR (CDCl₃): δ 29.34 (CH₃), 52.49 (C-3), 61.17 (OCH₃), 101.62 (C_{dual}) , 114.26 (C_{dual}) , 121.10 (CH), 123.51 (C_{dual}) , 124.87 (CH), 125.56 (C_{quat}) , 127.47 (CH), 130.86 (CH), 143.22 (C_{quat}) , 159.07 (=C-O), 169.74 $(0=0)$, 170.18 (O $=$ C $-$ O), 197.06 (C $=$ O). IR (ATR): v_{max} 3099, 1806, 1721, 1667, 1644, 1600 cm⁻¹. MS m/z (%): 301 ([M+H]⁺, 100). Anal. Calcd for $C_{16}H_{12}O_6$: C 64.00, H 4.03; found: C 63.83, H 3.98. HRMS (ESI) for C₁₆H₁₂O₆: 299.0634 [M-H]⁺, found 299.0563.

4.2.2. Methyl 2,3-dihydro-5-hydroxy-3-(1-oxo-n-propyl)naphtho [1,2-b]furan-4-carboxylate **19b**. Green crystals, mp: 154.7–156.0 °C (EtOH). ¹H NMR (CDCl₃): δ 1.15 (3H, t, J=7.2 Hz, CH₂CH₃), 2.65 (1H, qd, J=7.2, 8.9 Hz, $CH_aH_bCH_3'$), 3.03 (1H, qd, J=7.2, 8.9 Hz, $CH_aH_bCH_3$), 3.91 (3H, s, MeO), 5.17 (1H, s, H-3), 7.60-7.68 (1H, m, H-7 or H-8), 7.75-7.78 (1H, m, H-7 or H-8), 7.95 (1H, d, J=8.3 Hz, H-6 or H-9), 8.47 (1H, d, J=8.3 Hz, H-6 or H-9), 11.86 (1H, s, OH). ¹³C NMR (CDCl₃): δ 7.58 (CH₂CH₃), 35.74 (CH₂), 52.42 (C-3), 60.53 (OCH₃), 101.60 (C_{quat}), 114.41 (C_{quat}), 121.10 (CH), 123.56 (C_{quat}), 124.89 (CH), 125.53 (C_{quat}), 127.40 (CH), 130.86 (CH), 143.28 (C_{quat}), 159.13 (= C-O), 169.76 (O=C-O), 170.48 (O=C-O), 199.85 (C=O). IR (ATR): ν_{max} 3078, 1804, 1745, 1724, 1660, 1646, 1646, 1598 cm $^{-1}$. MS m/z (%): 313 ($[M-H]^+$, 100). Anal. Calcd for C₁₇H₁₄O₆: C 64.97, H 4.49; found: C 64.54, H 4.00. HRMS (ESI) for C₁₇H₁₄O₆: 313.0790 [M-H]⁺, found 313.0715.

4.2.3. Methyl 2,3-dihydro-5-hydroxy-3-(1-oxoisobutyryl)naphtho [1,2-b]furan-4-carboxylate 19c. Green crystals, mp: 178.6-179.4 °C (EtOH). ¹H NMR (CDCl₃): δ 1.15 (3H, d, J=6.6 Hz, CH(CH₃)(CH₃)), 1.25 (1H, d, J=6.6 Hz, CH(CH₃)(CH₃)), 3.20 (1H, sept, J=6.6 Hz, CH(CH₃)₂), 3.91 (3H, s, MeO), 5.30 (1H, s, H-3), 7.64-7.67 (1H, m, H-7 or H-8), 7.72–7.77 (1H, m, H-7 or H-8), 7.96 (1H, d, J=8.3 Hz, H-6 or H-9), 8.48 (1H, d, J=8.3 Hz, H-6 or H-9), 11.96 (1H, s, OH). ¹³C NMR (CDCl₃): δ 17.58 (CH(CH₃)(CH₃)), 19.31 (CH(CH₃)(CH₃)), 39.42 (CH(CH₃)₂), 52.47 (C-3), 59.65 (OCH₃), 101.92 (C_{quat}), 114.37 (C_{quat}), 121.12 (CH), 123.51 (Cquat), 124.89 (CH), 125.53 (Cquat), 127.42 (CH), 130.82 (CH), 143.12 (C_{quat}), 159.13 (=C-O), 170.05 (O=C-O), 170.25 (O=C-O), 202.94 (C=O). IR (ATR): v_{max} 3790, 2980, 2921, 1798, 1716, 1660, 1598 cm⁻¹. MS m/z (%): 327 ([M-H]⁺, 100). Anal. Calcd for C₁₈H₁₆O₆: C 65.85, H 4.91; found: C 65.60, H 4.26. HRMS (ESI) for $C_{18}H_{18}O_6$: 327.0947 [M-H]⁺, found 327.0867.

4.2.4. Methyl 3-benzoyl-2,3-dihydro-5-hydroxy-2-oxo-naphtho[1,2 b]furan-4-carboxylate 19d. Green crystals, mp: 219.1-220.3 °C (EtOH). ¹H NMR (CDCl₃): δ 3.44 (3H, s, MeO), 6.11 (1H, s, H-3), 7.59–7.71 (3H, m, H-3', H-4' and H-5'), 7.72–7.77 (1H, m, H-7 or H-8), 7.77-7.99 (1H, m, H-7 or H-8), 8.00 (1H, d, $J=8.3$ Hz, H-6 or H-9), $8.17-8.20$ (2H, m, H-2' and H-6'), 8.50 (1H, d, J=8.3 Hz, H-6 or H-9), 11.89 (1H, s, OH). ¹³C NMR (CDCl₃): δ 52.10 (C-3), 55.68 (OCH₃), 101.49 (C_{quat}), 115.56 (C_{quat}), 121.15 (CH), 123.62 (C_{quat}), 124.87 (CH), 125.54 (C_{quat}), 127.34 (CH), 129.18 (2 × CH), 129.51 (2 × CH), 130.83 (CH), 134.31 (CH), 135.77 (C_{quat}), 143.57 (C_{quat}), 159.23 (=C-O), 169.68 (O=C-O), 170.65 (O=C-O), 190.61 (C=O). IR (ATR): v_{max} 3056, 1798, 1688, 1660, 1649, 1597 cm⁻¹. MS m/z (%): 361 ([M-H]⁺, 100). Anal. Calcd for C₂₁H₁₄O₆: C 69.61, H 3.89; found: C 69.09, H 3.16. HRMS (ESI) for C₂₁H₁₄O₆: 361.0790 [M-H]⁺, found 361.0695.

4.3. Synthesis of methyl 5-hydroxy-2-methylnaphtho[1,2-b] furan-4-carboxylate 18

To a 10 wt % solution of ammonium acetate (1.0 g) in acetic acid (10 ml) were added 2-methoxycarbonyl-1,4-naphthoquinone 11 $(2.4 \text{ mmol}, 0.50 \text{ g})$ and ethyl acetoacetate **13a** $(2.5 \text{ mmol}, 0.32 \text{ g})$, and the reaction mixture was subsequently boiled under reflux for 4 h. After cooling to room temperature, the reaction mixture was poured in water. The organic phase was separated and the aqueous phase was extracted twice with 5 ml of dichloromethane. The combined organic extracts were washed with a saturated aqueous solution of sodium bicarbonate and then dried over magnesium(II) sulfate. Solvent evaporation in vacuo furnished a mixture of three compounds. Purification by column chromatography on silica gel with hexane/ethyl acetate (9:1) gave methyl 5-hydroxy-2 methylnaphthofuran-4-carboxylate 18 (0.08 g, 13%), methyl 1,4 dihydroxynaphthalene-2-carboxylate 15 (0.03 g, 6%) and 3 amino-2-methoxycarbonyl-1,4-naphthoquinone 20 (0.23 g, 41%). Spectral data of compounds 15 and 20 correspond to the experimental data in the literature.^{9a}

White crystals, mp:136.0–136.9 °C. ¹H NMR (CDCl₃): δ 2.55 (3H, s, CH3), 4.07 (3H, s, MeO), 6.82 (1H, s, H-3), 7.47 (1H, m, H-7 or H-8), 7.68 (1H, m, H-7 or H-8), 8.14 (1H, m, H-6 or H-9), 8.44 (1H, m, H-6 or H-9), 12.21 (1H, s, OH). ¹³C NMR (CDCl₃): δ 14.27 (CH₃), 52.28 (CH), 99.50 (C_{quat}), 119.52 (C_{quat}), 120.50 (C_{quat}), 122.20 (C_{quat}), 124.50 (CH), 124.51 (Cquat), 124.75 (Cquat), 124.99 (CH), 130.00 (CH), 155.09 (C_{quat}), 158.96 (C_{quat}), 172.05 (O=C-O). IR (ATR): v_{max} 3027, 1638, 1600 cm⁻¹. MS m/z (%): 257 ([M+H]⁺, 100). Anal. Calcd for C15H12O4: C 70.31, H 4.72, found: C 71.00, H 5.15. HRMS (ESI) for $C_{15}H_{12}O_4$: 257.0736 [M+H]⁺, found 257.0350.

4.4. Synthesis of methyl 2,3-dihydro-5-hydroxy-2 oxonaphtho[1,2-b]furan-4-carboxylate 21

To a solution of compound **19a** or **19d** (0.25 g) in toluene (10 ml) and acetic acid (2 ml) was added 12 equiv of ammonium acetate, and the reaction mixture was heated under reflux for 4 h. After cooling to room temperature, the reaction mixture was poured in water. The organic phase was separated and the aqueous phase was extracted with 3×8 ml of dichloromethane. The combined organic extracts were washed with a saturated solution of sodium bicarbonate, brine and dried over magnesium(II) sulfate. Solvent evaporation in vacuo furnished a solid, which was recrystallized from ethanol to furnish methyl 2,3-dihydro-5-hydroxy-2 oxonaphtho[1,2-b]furan-4-carboxylate 21.

Brown crystals, mp: 172.5–173.3 °C (EtOH). 1 H NMR (CDCl₃): δ 4.03 (3H, s, MeO), 4.07 (2H, s, H-3), 7.60 (1H, dd, J=7.9, 8.2 Hz, H-7), 7.73 (1H, dd, J=7.7, 7.9 Hz, H-8), 7.96 (1H, J=7.7 Hz, H-9), 8.45 (1H, d, J=8.2 Hz, H-6), 11.93 (1H, s, OH). ¹³C NMR (CDCl₃): δ 36.79 (CH₂), 52.74 (CH), 101.93 (C_{quat}), 114.79 (C_{quat}), 120.90 (CH), 123.71 (C_{quat}), 124.72 (CH), 126.78 (CH), 130.63 (CH), 142.75 (C_{quat}), 158.61 (C_{quat}), 170.78 (O=C-O), 174.86 (O=C-O). IR (ATR): v_{max} 3566, 3118, 3028, 2958, 1788, 1670, 1644, 1599 cm⁻¹. MS m/z (%): 257 ([M-H]⁺, 100). Anal. Calcd for C15H12O4: C 65.12, H 3.90; found: C 64.70, H 2.62. HRMS (ESI) for C₁₅H₁₂O₄: 257,0528 [M-H]⁺, found 257,0450.

4.5. Synthesis of 3,4-dialkyl-6-hydroxybenzo[g]furo[4,3,2-de] isoquinoline-2,5(4H)-diones 10

General procedure: To a solution 2-methoxycarbonyl-1,4 naphthoquinone 11 (2.40 mmol, 0.50 g) in toluene (16.7 ml) were added acetic acid (3.3 ml) and 1.05 equiv of the appropriate enaminoester 14a-h, respectively. The reaction mixture was subsequently boiled under reflux for $4-48$ h [\(Table 2](#page-4-0)). The reaction was followed to completion by TLC and LC-MS. After cooling to room temperature, the target compounds 10a, 10d and 10e precipitated as yellow-orange solids from the reaction mixture. After filtration of the crystals, the filtrate was poured in a saturated aqueous solution of sodium bicarbonate. The organic phase was separated and the aqueous phase was extracted with 3×20 ml of dichloromethane. The combined organic extracts were dried over magnesium(II) sulfate. Solvent evaporation in vacuo furnished crude solids, which were mixed with the isolated yellow-orange precipitate and were then recrystallized from ethanol.

4.5.1. 6-Hydroxy-3-methyl-4-n-propylbenzo[g]furo[4,3,2-de]isoquinoline-2,5(4H)-dione **10a**. Orange crystals, mp: 241.7-242.9 °C (EtOH). ¹H NMR (CDCl₃): δ 1.08 (3H, t, J=7.1 Hz, NCH₂CH₂CH₃), 1.85–1.75 (2H, m, NCH₂CH₂CH₃), 2.86 (3H, s, CH₃), 4.10 (2H, t, J=7.2 Hz, $NCH_2CH_2CH_3$), 7.49 (1H, ddd, J=1.4, 7.0, 8.8 Hz, H-7 or H-8), 7.68 (1H, ddd, $J=1.4$, 7.0, 8.8 Hz, H-7 or H-8), 7.98–8.01 (1H, dm, $J=8.8$ Hz, H-6 or H-9), 8.42–8.45 (1H, m, H-6 or H-9), 10.26 (1H, s, OH). ¹³C NMR $(CDCI₃)$: δ 11.43 $(CH₃)$, 16.13 $(CH₃)$, 22.84 $(NCH₂CH₂CH₃)$, 45.37 $(NCH₂)$, 100.67 (C_{quat}),101.94 (C_{quat}),120.31 (CH),120.63 (C_{quat}),122.32 (C_{quat}), 122.86 (Cquat), 124.44 (CH), 124.67 (CH), 129.82 (CH), 134.13 (Cquat), 150.72 (C_{quat}), 153.16 (=C-O), 165.36 (O=C-N), 166.51 (O=C-O). IR (ATR): $\nu_{\rm max}$ 3170, 1793, 1754, 1676, 1636, 1610, 1225 cm $^{-1}$. MS m/z (%): 310 ($[M+H]^+$, 100). Anal. Calcd for C₁₈H₁₅NO₄: C 69.89, H 4.89, N 4.53; found: C 68.89, H 4.30, N 4.36. HRMS (ESI) for C₁₈H₁₅NO₄: 308.1001 $[M-H]$ ⁺, found 308.0930.

4.5.2. 4-Ethyl-6-hydroxy-3-methylbenzo[g]furo[4,3,2-de]isoquinoline-2,5(4H)-dione **10d**. Orange crystals, mp: 243.1-244.6 °C (EtOH). ¹H NMR (CDCl₃): δ 1.40 (3H, t, J=7.1 Hz, NCH₂CH₃), 2.86 (3H, s, CH₃), 4.23 (2H, q, J=7.1 Hz, NCH₂CH₃), 7.49 (1H, ddd, J=1.4, 7.0, 8.8 Hz, H-7 or H-8), 7.68 (1H, ddd, J=1.4, 7.0, 8.8 Hz, H-7 or H-8), 7.98–8.02 (1H, dm, J=8.8 Hz, H-6 or H-9), 8.27–8.46 (1H, m, H-6 or H-9), 10.23 (1H, s, OH). ¹³C NMR (CDCl₃): δ 14.27 (CH₃), 16.01 (CH₃), 38.96 (NCH₂), 100.67 (C_{quat}), 101.97 (C_{quat}), 120.32 (CH), 120.32 (Cquat), 122.18 (Cquat), 122.87 (Cquat), 124.46 (CH), 124.69 (CH), 129.84 (CH), 140.35 (C_{quat}), 150.55 (C_{quat}), 153.16 (=C-O), 165.21 (O=C-N), 167.09 (O=C-O). IR (ATR): v_{max} 3170, 1793, 1754, 1676, 1636, 1610, 1225 cm⁻¹. MS m/z (%): 296 ([M+H]⁺, 100). Anal. Calcd for C17H13NO4: C 69.15, H 4.44, N 4.74; found: C 68.16, H 3.54, N 4.49. HRMS (ESI) for $C_{17}H_{13}NO_4$: 294.0845 $[M-H]^{+}$, found 294.0768.

4.5.3. 3,4-Diethyl-6-hydroxybenzo[g]furo[4,3,2-de]isoquinoline-2,5(4H)-dione **10e**. Yellow crystals, mp: 200.7—201.6 °C (EtOH). ¹H

NMR (CDCl₃): δ 1.41 (3H, t, J=7.2 Hz, CH₂CH₃), 1.49 (3H, t, J=7.2 Hz, NCH₂CH₃), 3.22 (2H, q, J=7.2 Hz, CH₂CH₃), 4.22 (2H, q, J=7.2 Hz, NCH_2CH_3), 7.46 (1H, ddd, J=1.4, 7.0, 8.8 Hz, H-7 or H-8), 7.65 (1H, ddd, J=1.4, 7.0, 8.8 Hz, H-7 or H-8), 7.94-7.99 (1H, dm, J=8.8 Hz, H-6 or H-9), 8.38–8.43 (1H, m, H-6 or H-9), 10.20 (1H, s, OH). ¹³C NMR (CDCl₃): δ 13.91 (CH₃), 14.90 (CH₃), 22.84 (CH₂CH₃), 38.68 (NCH₂), 100.70 (C_{quat}), 100.90 (C_{quat}), 120.18 (CH), 120.76 (C_{quat}), 122.14 (C_{quat}), 122.72 (C_{quat}), 124.35 (CH), 124.58 (CH), 129.73 (CH), 134.37 (C_{quat}), 153.00 (C_{quat}), 156.38 (=C-O), 165.34 (O= C-N), 166.57 (O=C-O). IR (ATR): v_{max} 3170, 1793, 1754, 1676, 1636, 1610, 1225 cm⁻¹. MS m/z (%): 310 ([M+H]⁺, 100). Anal. Calcd for C18H15NO4: C 69.89, H 4.89, N 4.53; found: C 69.39, H 4.47, N 4.40. HRMS (ESI) for $C_{18}H_{15}NO_4$: 308.1001 $[M-H]^{+}$, found 308.0920.

4.6. Synthesis of 2,3-dialkyl-1,2,5,10-tetrahydro-1,5,10 trioxobenzo[g]isoquinoline-4-carboxylic acids 30

General procedure: 100 mg of 3,4-dialkyl-6-hydroxybenzo[g] furo[4,3,2-de]isoquinoline-2,5(4H)-diones $10d$ (0.34 mmol) and 10e (0.32 mmol) were added to a solution of 2 ml of 4 M NaOH, 1 ml of THF and 1 ml of MeOH. This reaction mixture was stirred for 1.5 h in an oil bath, which was preheated to 50 \degree C, and then it was cooled to room temperature. The reaction mixture was poured in 8 ml of 1 M HCl and extracted with 3×5 ml of chloroform. The combined organic extracts were washed with brine and concentrated in vacuo to afford the target compounds $30d$ and $30e$ (purity $81-83%$). All attempts to purify the latter compounds by column chromatography and/or recrystallization techniques failed as it resulted in degradation of the products.

4.6.1. 2-Ethyl-3-methyl-1,2,5,10-tetrahydro-1,5,10-trioxobenzo[g]isoquinoline-4-carboxylic acid **30d**. Brown powder, mp: 190.6–191.8 °C. ¹H NMR (DMSO-d₆): δ 1.24–1.28 (3H, t, J=7.1 Hz, NCH₂CH₃), 2.51 (3H, s, CH₃), 4.12 (2H, q, J=7.1 Hz, NCH₂CH₃), 7.82 -7.987 (1H, dd, $I=6.3$ and 7.1 Hz, H-7 or H-8), 7.90 -7.95 (1H, dd, $J=6.6$ and 7.1 Hz, H-7 or H-8), 8.02 (1H, d, $J=7.1$ Hz, H-6 or H-9), 8.07 (1H, d, J=7.1 Hz, H-6 or H-9). ¹³C NMR (DMSO): δ 13.40 (CH₃), 18.65 (CH₃), 79.74 (NCH₂), 111.89 (C_{quat}), 116.66 (C_{quat}), 126.58 (CH), 126.72 (CH), 131.8 (C_{quat}), 134.00 (2 x CH), 135.80 (C_{quat}), 141.29 (C_{quat}), 153.56 (C_{quat}), 157.56 (C_{quat}), 168.91 (O=C-N and O=C-O), 180.34 (C=O), 183.76 (C=O). IR (ATR): v_{max} 3352, 3164, 3071, 2922, 2853, 2626, 2360, 2341, 1716, 1682, 1616, 1521, 1285 cm⁻¹. MS m/z $(\%)$: 312 ([M+H]⁺, 100). Purity (LC-MS): 83%.

4.6.2. 2,3-Diethyl-1,2,5,10-tetrahydro-1,5,10-trioxobenzo[g]isoquinoline-4-carboxylic acid 30e. Brown powder, mp: 192.1–193.9 °C. ¹H NMR (CDCl₃): δ 1.43 (6H, 2 × t, J=7.1 Hz, CH₂CH₃ and NCH₂CH₃), 2.94 (2H, q, J=7.1 Hz, CH₂CH₃), 4.28 (2H, q, J=7.1 Hz, NCH₂CH₃), $7.71 - 7.76$ (1H, dd, $J = 7.1$ and 7.1 Hz, H-7 or H-8), 7.80 -7.85 (1H, dd, $J=7.7$ and 7.7 Hz, H-7 or H-8), 8.10 (1H, d, $J=7.7$ Hz, H-6 or H-9), 8.26 (1H, d, J=7.7 Hz, H-6 or H-9). ¹³C NMR (DMSO-d₆): δ 14.15 (CH₃), 14.39 (CH₃), 25.28 (CH₂CH₃), 79.94 (NCH₂), 111.65 (C_{quat}), 117.10 (C_{quat}) , 126.60 (CH), 126.72 (CH), 131.81 (C_{quat}), 134.02 (CH), 134.03 (C_{quat}) , 135.82 (CH), 141.52 (C_{quat}), 157.67 (C_{quat}), 157.76 (CH), 168.75 (O=C-N and O=C-O), 180.39 (C=O), 183.76 (C=O). IR (ATR): v_{max} 3342, 3165, 3073, 3025, 2963, 2700, 1750, 1678, 1606, 1528 cm⁻¹. MS m/z (%): 326 ([M+H]⁺, 100). Purity (LC-MS): 81%.

4.7. Synthesis of alkyl 2,3-disubstituted alkyl 1,2,5,10 tetrahydro-1,5,10-trioxobenzo[g]isoquinoline-4-carboxylates 9

Procedure A: To a solution of 2,3-diethyl-1,2,5,10-tetrahydro-1,5,10-trioxobenzogisoquinoline-4-carboxylic acid 30e (200 mg, 0.62 mmol) in 2 ml of THF and 8 ml of acetonitrile was added a freshly-prepared solution of 5 equiv of diazomethane in

anhydrous diethyl ether at room temperature. The reaction was run to completion after 2 h. Then the reaction mixture was poured in 10 ml of water and extracted with 3×10 ml of ethyl acetate. The combined organic extracts were washed with brine and dried over magnesium sulfate. The filtrate was concentrated under reduced pressure to form a crude solid, which was purified by preparative thin layer chromatography on silica gel using a mixture of hexane/ ethyl acetate (1:4) as eluents to afford 203 mg (97%) of the target compound 9e.

Procedure B, Oxidative addition: To a mixture of methyl 1,4 dihydroxynaphthalene-2-carboxylate 15 (0.5 g, 1.15 mmol), manganese oxide (1.34 g, 6.90 mmol) and magnesium(II) sulfate (2.76 g, 11.50 mmol) was added a solution of an appropriate enaminoester 14 (1.05 equiv in 20 ml of anhydrous dichloromethane). The reaction mixture was stirred at room temperature for 3.5 h, after which it was filtered and concentrated in vacuo. The resulting residue was dissolved in 15 ml of toluene and 3 ml of acetic acid, and this mixture was subsequently boiled under reflux for $1-1.5$ h. After cooling to room temperature, the reaction mixture was poured in water and extracted with ethyl acetate $(3\times20 \text{ ml})$. The combined organic extracts were washed with aqueous saturated sodium bicarbonate and brine, after which they were dried (MgSO4) and concentrated in vacuo. The obtained target compounds were recrystallized from methanol for compounds **9a,e** and from ethanol for compounds $9g-j$.

4.7.1. Methyl 2-n-propyl-3-methyl-1,2,5,10-tetrahydro-1,5,10 trioxobenzo[g]isoquinoline-4-carboxylate **9a**. Greenish brown powder, mp: not observed due to compound decomposition at 256 °C. ¹H NMR (CDCl₃): δ 1.01 (3H, t, J=7.4 Hz, CH₂CH₂CH₃), 1.77 (2H, sext, J=7.4 Hz, NCH₂CH₂CH₃), 3.19 (3H, s, CH₃), 4.00 (3H, s, OCH₃), 4.11 (2H, br s, NCH₂CH₂CH₃), 7.76 (1H, t, J=7.7 Hz, H-7 or H-8), 7.83 (1H, t, $J=7.7$ Hz, H-7 or H-8), 8.08 (1H, d, $J=7.7$ Hz, H-6 or H-9), 8.25 (1H, d, J=7.7 Hz, H-6 or H-9). ¹³C NMR (CDCl₃): δ 11.17 (NCH₂CH₂CH₃), 22.67 (NCH₂CH₂CH₃), 30.73 (CH₃), 47.07 (NCH₂CH₂CH₃), 53.91 (OCH₃), 110.75 (C_{quat}), 118.86 (C_{quat}), 126.77 (CH), 127.28 (CH), 131.39 (C_{quat}), 133.59 (C_{quat}), 133.59 (CH), 135.47 (CH), 141.82 (C_{quat}), 151.41 (C_{quat}), 159.06 (O=C-N), 168.40 (O=C-O), 180.20 (C=O), 183.24 (C=O). IR (ATR): v_{max} 2961, 1717, 1688, 1631, 1592, 1513, 1437, 1415, 1283, 1254, 1164, 969 cm⁻¹. MS m/z (%): 340 ([M+H]⁺, 10), 699 (100). Anal. Calcd for C₁₉H₁₇NO₅: C 67.25, H 5.05, N 4.13; found: C 66.39, H 3.78, N 4.93. HRMS (ESI) for C₁₉H₁₇O₅: 340.1107 $[M+H]$ ⁺, found 340.1181.

4.7.2. Methyl 2-3-diethyl-1,2,5,10-tetrahydro-1,5,10-trioxobenzo[g] isoquinoline-4-carboxylate **9e**. Red orange crystals, mp: 183.1–184.2 °C (MeOH). ¹H NMR (CDCl₃): δ 1.37 (3H, t, J=7.0 Hz, CH₂CH₃), 1.41 (3H, t, J=7.0 Hz, NCH₂CH₃), 2.80 (2H, q, J=7.0 Hz, CH₂CH₃), 4.00 (3H, s, OCH₃), 4.28 (2H, q, J=7.0 Hz, NCH₂CH₃), 7.72 $(1H, d, J=7.7$ Hz, H-7 or H-8), 7.82 $(1H, d, J=7.7$ Hz, H-7 or H-8), 8.09 (1H, d, J=7.7 Hz, H-6 or H-9), 8.25 (1H, d, J=7.7 Hz, H-6 or H-9). ¹³C NMR (CDCl₃): δ 13.86 (CH₂CH₃), 14.13 (NCH₂CH₃), 25.35 (CH₂CH₃), 40.88 (NCH₂CH₃), 53.28 (OCH₃), 109.01 (C_{quat}), 117.60 (C_{quat}), 126.66 (CH), 127.19 (CH), 131.45 (C_{quat}), 133.36 (C_{quat}), 133.74 (CH), 135.30 (CH), 141.73 (C_{quat}), 157.36 (C_{quat}), 158.29 (O=C-N), 168.28 (O= C-O), 180.46 (C=O), 183.46 (C=O). IR (ATR): v_{max} 2946, 1731, 1693, 1632, 1514, 1434, 1283, 1260, 1153, 1087, 994, 749 cm⁻¹. MS m/z (%): 340 ($[M+H]^{+}$, 100). Anal. Calcd for C₁₉H₁₇NO₅: C 67.25, H 5.05, N 4.13; found: C 67.04, H 4.47, N 5.53. HRMS (ESI) for C₁₉H₁₇NO₅: 340.1107 $[M+H]$ ⁺, found 340.1201.

4.7.3. Ethyl 2-ethyl-3-phenyl-1,2,5,10-tetrahydro-1,5,10-trioxobenzo $[g]$ isoquinoline-4-carboxylate **9g**. Yellow-orange crystals, mp: 193.4–194.2 °C (EtOH). ¹H NMR (CDCl₃): δ 1.00 (3H, t, J=7.1 Hz, NCH₂CH₃), 1.21 (3H, t, J=6.9 Hz, OCH₂CH₃), 3.97 (2H, q, J=7.1 Hz, NCH₂CH₃), 4.02 (2H, q, J=6.9 Hz, OCH₂CH₃), 7.37-7.40 (2H, m, H-2^{*n*})

and H-5'), 7.49–7.56 (3H, m, H-3', H-4' and H-5'), 7.73 (1H, t, J=6.0 Hz, H-7 or H-8), 7.83 (1H, t, J=6.0 Hz, H-7 or H-8), 8.10 (1H, d, J=6.0 Hz, H-6 or H-9), 8.28 (1H, d, J=6.0 Hz, H-6 or H-9). ¹³C NMR (CDCl₃): δ 13.66 (NCH₂CH₃), 13.94 (OCH₂CH₃), 43.13 (NCH₂CH₃), 61.77 (OCH₂CH₃), 111.88 (C_{quat}), 119.02 (C_{quat}), 126.67 (CH), 127.27 (CH), 128.49 (2 × CH), 128.75 (2 × CH), 130.47 (CH), 131.44 (C_{quat}), 131.57 (C_{quat}), 133.44 (CH), 133.77 (C_{quat}), 135.29 (CH), 141.42 (C_{quat}), 154.69 (C_{quat}), 157.89 (O=C-N), 166.45 (O=C-O), 180.63 (C=O), 183.21 (C=O). IR (ATR): v_{max} 2991, 1735, 1658, 1628, 1591, 1523, 1488, 1444, 1400, 1327, 1223, 1182, 1150, 1047, 977, 916 cm⁻¹. MS m/ z (%): 402 ([M+H]⁺, 100). Anal. Calcd for C₂₄H₁₉NO₅: C 71.81, H 4.77, N 3.49; found: C 71.39, H 4.02, N 3.49. HRMS (ESI) for C₂₄H₁₉O₅: 402.1263 $[M+H]$ ⁺, found 402.1344.

4.7.4. Ethyl 3-phenyl-2-n-propyl-1,2,5,10-tetrahydro-1,5,10 trioxobenzo[g]isoquinoline-4-carboxylate **9h**. Orange crystals, mp: 169.0–169.4 °C (EtOH). ¹H NMR (CDCl₃): δ 0.75 (3H, t, J=7.4 Hz, NCH₂CH₂CH₃), 1.00 (3H, t, J=7.1 Hz, OCH₂CH₃), 1.66 (2H, sext, J=7.4 Hz, NCH₂CH₂CH₃), 3.82 (2H, q, J=7.4 Hz, NCH₂CH₂CH₃), 4.02 (2H, q, J=7.1 Hz, OCH₂CH₃), 7.36–7.41 (2H, m, H-2^{*'*} and H-5^{*'*}), 7.49–7.56 (3H, m, H-3', H-4' and H-5'), 7.73 (1H, t, J=6.0 Hz, H-7 or H-8), 7.83 (1H, t, J=6.0 Hz, H-7 or H-8), 8.10 (1H, d, J=6.0 Hz, H-6 or H-9), 8.28 (1H, d, J=6.0 Hz, H-6 or H-9). ¹³C NMR (CDCl₃): δ 11.31 (NCH₂CH₂CH₃), 13.66 (OCH₂CH₃), 22.09 (NCH₂CH₂CH₃), 49.30 (NCH₂CH₂CH₃), 61.77 (OCH₂H₃), 111.80 (C_{quat}), 118.98 (C_{quat}), 126.67 (CH), 127.28 (CH), 128.57 (2 × CH), 128.67 (2 × CH), 130.46 (CH), 131.47 (C_{quat}), 131.57 (C_{quat}), 133.42 (CH), 133.79 (C_{quat}), 135.27 (CH), 141.39 (C_{quat}), 154.66 (C_{quat}), 158.00 (O= C-N), 166.47 (O=C-O), 180.59 (C=O), 183.23 (C=O). IR (ATR): v_{max} 2980, 1688, 1628, 1593, 1524, 1492, 1446, 1406, 1320, 1285, 1177, 1166, 1024, 977, 928 cm⁻¹. MS m/z (%): 416 ([M+H]⁺, 100). Anal. Calcd for C₂₅H₂₁NO₅: C 72.28, H 5.10, N 3.37; found: C 71.39, H 4.55, N 8.21. HRMS (ESI) for C₂₅H₂₁NO₅: 416.1419 [M+H]⁺, found 416.1502.

4.7.5. Ethyl 3-methyl-2-n-propyl-1,2,5,10-tetrahydro-1,5,10 trioxobenzo[g]isoquinoline-4-carboxylate $9i$. Brown crystals, mp: 128.6–129.0 °C (EtOH). ¹H NMR (CDCl₃): δ 1.12 (3H, t, J=7.4 Hz, $CH_2CH_2CH_3$), 1.40 (3H, J=7.4 Hz, OCH₂CH₃), 1.77 (2H, sext, J=7.4 Hz, NCH₂CH₂CH₃), 3.18 (3H, s, CH₃), 4.26 (2H, br s, NCH₂CH₂CH₃), 4.48 (2H, q, J=7.4 Hz, OCH₂CH₃), 7.75 (1H, t, J=7.7 Hz, H-7 or H-8), 7.84 (1H, t, $J=7.7$ Hz, H-7 or H-8), 8.09 (1H, d, $J=7.7$ Hz, H-6 or H-9), 8.26 (1H, d, J=7.7 Hz, H-6 or H-9). ¹³C NMR (CDCl₃): To date, a decent 13 C NMR spectrum of this derivative could not be recorded even upon prolongation of the relaxation delay and increasing the number of recorded scans. IR (ATR) v_{max} : 2968, 1725, 1688, 1629, 1592, 1511, 1440, 1417, 1415, 1327, 1282, 1254, 1210, 1174, 1058, 1011, 968 cm⁻¹. MS m/z (%): 354 ([M+H]⁺, 10%), 705 (100%). Anal. Calcd for C₂₀H₁₉NO₅: C 67.98, H 5.42, N 3.96; found: C 67.66, H 4.71, N 6.61. HRMS (ESI) for C₂₀H₁₉NO₅: 354.1263 [M+H]⁺, found 354.1326.

4.7.6. Methyl 3-ethyl-2-n-propyl-1,2,5,10-tetrahydro-1,5,10 trioxobenzo[g]isoquinoline-4-carboxylate **9j**. Orange crystals, mp: 128.6–129.0 °C (EtOH). ¹H NMR (CDCl₃): δ 1.05 (3H, t, J=7.4 Hz, $CH_2CH_2CH_3$), 1.36 (3H, J=7.4 Hz, CH₂CH₃), 1.79 (2H, sext, J=7.4 Hz, $NCH_2CH_2CH_3$), 2.80 (2H, q, J=7.4 Hz, CH_2CH_3), 4.00 (3H, s, OCH₃), 4.11 (2H, q, J=7.4 Hz, NCH₂CH₃), 7.72 (1H, t, J=7.7 Hz, H-7 or H-8), 7.81 (1H, t, J=7.7 Hz, H-7 or H-8), 8.09 (1H, d, J=7.7 Hz, H-6 or H-9), 8.25 (1H, d, J=7.7 Hz, H-6 or H-9). ¹³C NMR (CDCl₃): δ 11.52 (CH₃), 13.80 (CH₃), 22.35 (CH₂CH₃), 25.41 (NCH₂CH₂CH₃), 47.16 (NCH₂CH₂CH₃), 53.26 (OCH₃), 109.96 (C_{quat}), 117.57 (C_{quat}), 126.66 (CH), 127.21 (CH), 131.47 (C_{quat}), 133.35 (C_{quat}), 133.76 (CH), 135.29 (CH), 141.71 (C_{quat}), 157.41 (C_{quat}), 158.42 (O=C-N), 168.29 (O= C-O), 180.43 (C=O), 183.47 (C=O). IR (ATR): v_{max} 2966, 1728, 1691, 1633, 1593, 1516, 1415, 1330, 1282, 1255, 1148, 1064, 979 cm⁻¹. MS

 m/z (%): 354 ($[M+H]^{+}$, 100). Anal. Calcd for C₂₀H₁₉NO₅: C 67.98, H 5.42, N 3.96; found: C 67.73, H 4.92, N 12.35. HRMS (ESI) for $C_{20}H_{19}NO_5$: 354.1262 [M+H]⁺, found 354.1262.

4.8. Synthesis of methyl 1,2-dihydro-5,10-dihydroxy-2-ethyl-3-methyl-1-oxobenzo[g]isoquinoline-4-carboxylate 31d

To a solution of 1,2-dihydro-5,10-dihydroxy-2-ethyl-3-methyl-1-oxobenzo[g]isoquinoline-4-carboxylic acid **29d** (200 mg) 0.64 mmol) in 2 ml of THF and 8 ml of acetonitrile was added a freshly-prepared solution of 5 equiv of diazomethane in anhydrous diethyl ether at room temperature. The reaction was run to completion, after which the reaction mixture was poured in 10 ml of water and extracted with 3×10 ml of ethyl acetate. The combined organic extracts were washed with brine and dried over magnesium(IV) sulfate in a flask, which was open to air and which was stirred vigorously for 1 h. After filtration, the solvent was evaporated in vacuo to form a crude solid, which was purified by preparative thin layer chromatography on silica gel using a mixture of hexane/ethyl acetate (1:4) as eluents to afford compound 31d and compound 9d in 22% and 14%, respectively.

4.8.1. Methyl 1,2-dihydro-5,10-dihydroxy-2-ethyl-3-methyl-1 oxobenzo[g]isoquinoline-4-carboxylate 31d. Green sticky solid, ¹H NMR (CDCl₃): δ 1.40 (3H, t, J=7.5 Hz, NCH₂CH₃), 2.90 (3H, s, CH₃), 4.18 (3H, s, OCH₃), 4.25 (2H, q, J=7.5 Hz, NCH₂CH₃), 7.53 (1H, t, J=9.0 Hz, H-7 or H-8), 7.67 (1H, t, J=9.0 Hz, H-7 or H-8), 8.08 (1H, d, J=9.0 Hz, H-6 or H-9), 8.45 (1H, d, J=9.0 Hz, H-6 or H-9). ¹³C NMR $(CDCI_3)$: δ 14.12 (CH_3) , 16.09 (CH_3) , 39.65 (NCH_2CH_3) , 63.72 (OCH_3) , 99.91 (C_{quat}), 109.13 (C_{quat}), 120.58 (CH), 122.00 (C_{quat}), 122.54 (C_{quat}) , 125.04 (CH), 125.70 (CH), 128.05 (C_{quat}), 129.27 (CH), 138.31 (C_{quat}), 151.70 (C_{quat}), 153.48 (C_{quat}), 160.13 (O=C-N), 166.95 (O= C-O). IR (ATR): v_{max} 3347, 2944, 2358, 1751, 1672, 1638, 1440, 1396, 1366, 1237, 1044 cm⁻¹. MS m/z (%): 328 ([M+H]⁺, 100).

4.8.2. Methyl 2-ethyl-3-methyl-1,2,5,10-tetrahydro-1,5,10 trioxobenzo[g]isoquinoline-4-carboxylate **9d**. Orange red powder, mp: not observed due to decomposition of the compound at 280 $\,^{\circ}$ C. ¹H NMR (CDCl₃): δ 1.42 (3H, t, J=7.4 Hz, CH₂CH₃), 3.19 (3H, s, CH₃), 4.09 (3H, s, OCH₃), 4.24 (2H, br s, NCH₂), 7.74 (1H, t, J=7.7 Hz, H-7 or H-8), 7.83 (1H, t, J=7.7 Hz, H-7 or H-8), 8.09 (1H, d, J=7.7 Hz, H-6 or H-9), 8.25 (1H, d, J=7.7 Hz, H-6 or H-9). ¹³C NMR (CDCl₃): δ 14.27 (CH₂CH₃), 30.66 (CH₃), 41.32 (NCH₂), 53.79 (OCH₃), 110.74 (C_{quat}), 118.83 (C_{quat}), 126.61 (CH), 127.20 (CH), 131.28 (C_{quat}), 133.23 (C_{quat}), 135.43 (CH), 136.91 (CH), 141.78 (C_{quat}), 151.67 (C_{quat}), 157.94 (O= C-N), 168.33 (O=C-O), 180.36 (C=O), 183.32 (C=O). IR (ATR): v_{max} 1735, 1687, 1508, 1416, 1281, 1259, 994 cm⁻¹. MS m/z (%): 326 $([M+H]^{+}, 100)$.

Acknowledgements

The authors are indebted to the Belgian Technical Cooperation (BTC) and the Research Foundation-Flanders (FWO-Vlaanderen) for financial support of this research.

References and notes

- 1. (a) Sperry, J.; Lorenzo-Castrillejo, I.; Brimble, M. A.; Machín, F. Bioorg. Med. Chem. **2009**, 17, 7131–7137; (b) Brimble, M. A.; Duncalf, L. J.; Nairn, M. R. Nat.
Prod. Rep. **1999**, 16, 267–281; (c) Sperry, J.; Bachu, P.; Brimble, M. A. Nat. Prod. Rep. 2008, 25, 376-400.
- 2. Jammula, S. R.; Pepalla, S. B.; Telikepalli, H.; Rao, K. V. J.; Thomson, R. H. Phytochemistry 1991, 30, 3741-3744.
- 3. (a) Claessens, S.; Verniest, G.; Jacobs, J.; Van Hende, E.; Habonimana, P.; Nguyen Van, T.; Van Puyvelde, L.; De Kimpe, N. Synlett 2007, 829–850; (b) Kesteleyn, B.; De Kimpe, N. J. Org. Chem. 1999, 64, 1173-1179; (c) Kesteley, B.; De Kimpe, N.; Van Puyvelde, L. Syntheis 1999, 1881-1883.
- 4. Plubrukarn, A.; Yuenyongsawad, S.; Thammasaroj, T.; Jitsue, A. Pharm. Biol. 2003, 41, 439-442.
- (a) Arsenault, G. P. Tetrahedron Lett. 1965 , 45 , $4033-4037$; (b) Steyn, P. S.; Wessels, P. L.; Marasas, W. F. O. Tetrahedron 1979, 35, 1551-1555; (c) Solis, P. N.; Langat, C.; Gupta, M. P.; Kirby, G. C.; Warhurst, D. S.; Phillipson, J. D. Planta Med. 1995, 61, 62-65; (d) Phillipson, J. D. Phytochemistry 1995, 38, 1319-1343; (e) Kesteleyn, B.; De Kimpe, N. J. Org. Chem. 2000, 65, 640-644; (f) Moriyasu, Y.; Miyagawa, H.; Hamada, N.; Miyakawi, H.; Ueno, T. Phytochemistry 2001, 58, $239 - 241$
- 6. (a) Miljkovic, A.; Mantle, P. G.; Williams, D. J.; Rassing, B. J. Nat. Prod. 2001, 64, 1251-1253; (b) Parisot, D.; Devys, M.; Barbier, M. Z.; Naturforsch, B. Tetrahedron 1989, 44, 1473-1474.
- 7. Nguyen Van, T.; Verniest, G.; Claessens, S.; De Kimpe, N. Tetrahedron 2005, 61, 2295-2300.
- 8. (a) Valderrama, J. A.; Gonzalez, M. F.; Pessoa-Mahana, D.; Tapia, R. A.; Fillion, H.; Pautet, F.; Rodriguez, J. A.; Theoduloz, C.; Schmeda-Hirschmann, G. Bioorg. Med. Chem. 2006, 14, 5003-5011; (b) Choshi, T.; Kumermura, T.; Nobuhiro, J.; Hibino, S. Tetrahedron Lett. 2008, 49, 3727-3728; (c) Croisy-Delcey, M.; Bisagni, L. J. Chem. Soc., Chem. Commun. 1984, 897-898; (d) Armamonov, A. A.; Shneider, T.; Baranova, N. V. Chem. Heterocycl. Compd. 1980, 16, 397-401; (e) Cameron, D. W.; Deutscher, K. R.; Feutrill, G. I.; Hunt, D. E. Aust. J. Chem. 1982, 35, 1451-1468; (f) Welzel, T.; Weib, D.; Beckert, R.; Gorls, H. Z. Naturforsh. 2010, 65b, 833-842; (g) Rebstock, A. S.; Mongin, F.; Trecourt, F.; Quéguiner, G. Org. Biomol. Chem. 2004 2, 291-295.
- (a) Jacobs, J.; Claessens, S.; Mbala, B. M.; Huygen, K.; De Kimpe, N. Tetrahedron 2009, 65, 1193-1199; (b) Jacobs, J.; Mbala, B. M.; Kesteleyn, B.; Diels, G.; De Kimpe, N. Tetrahedron 2008, 64, 6364–6371; (c) Jacobs, J.; Kesteleyn, B.; De Kimpe, N. Tetrahedron 2008, 64, 4985-4992; (d) Jacobs, J.; Deblander, J.; Kesteleyn, B.; Abbaspour Tehrani, K.; De Kimpe, N. Tetrahedron 2008, 64, 5345-5353; (e) Claessens, S.; Jacobs, J.; De Kimpe, N. Synlett 2007, 741-744.
- 10. Jacobs, J.; Claessens, S.; Kesteleyn, B.; Huygen, K.; De Kimpe, N. Tetrahedron **2007**, 63, 2505-2510.
- 11. Jacobs, J.; Kesteleyn, B.; De Kimpe, N. Tetrahedron 2008, 64, 7545-7554.
- 12. (a) Sloman, D. L.; Mitasev, B.; Scully, S. S.; Beutler, J. A.; Porco, J. A., Jr. Angew. Chem., Int. Ed. 2011, 50, 2511-2515; (b) Ratnayake, R.; Lacey, E.; Tennant, S.; Gill, J. H.; Capon, R. J. Chem.-Eur. J. 2007, 13, 1610-1619.
- 13. (a) Lee, H. J.; Park, S. Y.; Kim, J. S.; Song, H. M.; Suh, M. E.; Lee, C. O. Bioorg. Med. Chem. 2003, 11, 4791-4796; (b) Makosza, M.; Nizamov, S. Tetrahedron 2001, 57, 9615-9621; (c) Aleman, J.; Richter, B.; Jorgensen, J. A. Angew. Chem. 2007, 46, 5515-5518; (d) Reynolds, G. A.; Van Allan, J. A.; Adel, R. E. J. Org. Chem. 1965, 30, 3819-3824; (e) Widmer, E.; Meyer, J. W.; Walser, A.; Hardegger, E. Helv. Chim. Acta $1965, 48, 538 - 555$.
- 14. (a) Tseng, C. M.; Wu, Y. L.; Chuang, C. P. Tetrahedron 2004, 60, 12249-12260; (b) Tseng, C. M.; Wu, Y. L.; Chuang, C. P. Tetrahedron 2002, 58, 7625-7633; (c) Tsai, A. I.; Wu, Y. L.; Chuang, C. P. Tetrahedron 2001, 57, 7829-7837; (d) Wang, S. F.; Chuang, C. P.; Lee, J. H. Heterocycles 1999, 50, 489-497; (e) Chuang, C. P.; Wang, S. F. Tetrahedron 1998, 54, 10043-10052; (f) Murphy, W. S.; Neville, D.; Ferguson, G. Tetrahedron Lett. 1996, 37, 7615-7618.
- 15. Mudiganti, N. V. S.; Claessens, S.; De Kimpe, N. Tetrahedron 2009, 65, 1716-1723.
- 16. Irikura, K. K.; Meot-Ner, M.; Sieck, L. W. J. Org. Chem. 1996, 61, 3167-3171.
- 17. (a) Nenitzescu, C. D. Bull. Soc. Chim. Romania 1929, 11, 37-43; (b) Allen, G. R.; Weiss, M. J. J. Org. Chem. **1968**, 33, 198–200; (c) Schenck, L. W.; Sippel, A.; Kuna, K.; Frank, W.; Albert, A.; Kucklaender, U. Tetrahedron 2005, 61, 9129–9139; (d) Kucklander, U.; Pitzler, H.; Kuna, K. Arch. Pharmacol. 1994, 327, 137-142; (e) Lyubchanskaya, V. M.; Alekseeva, L. M.; Savina, S. A.; Shashkov, A. S.; Granik, V. G. Russ. Chem. Bull. 2002, 51, 1886–1893; (f) Patil, S. A.; Patil, R.; Miller, D. Curr. Org. Chem. 2008, 12, 691–717; (g) Valderrama, J. A.; Ibacache, J. A.; Arancibia, V.; Rodriguez, J.: Theoduloz, C. Bioorg. Med. Chem. 2009, 17, 2894-2901.
- 18. Baraldi, P. G.; Simoni, D.; Manfredini, S. Synthesis 1983, 902-903.